简介
tensorflow-serving是一个tensorflow模型部署的方案,其在设计时,就考虑了非常灵活的设计,比如:
- 支持不同的文件系统,并且易扩展
- 将模型发现、加载、使用和卸载和模型生命周期的管理,以及对外提供服务解耦合,因此非常容易扩展它的模型发现方式,以及同样可以支持其他框架下模型的整合。
- 整个服务是无状态的,因此方便在k8s上进行部署
下图是 tensorflow serving 的整体架构:
模型加载方式
tensorflow-serving支持从不同的地方,以不同的方式去加载模型。比如我们可以直接在启动tensorflow-serving时加上模型的地址,也可以提供模型配置文件来启动服务。
启动时加上参数:
tensorflow_model_server --port=9000 --rest_api_port=8500 --model_name=resnet --model_base_path=/home/jiang/data/yolov3
从配置文件中加载模型:
/etc/config/models.config
model_config_list {
config {
name: 'fashion'
base_path: 's3://models/fashion/'
model_platform: 'tensorflow'
}
config {
name: 'resnet'
base_path: 's3://models/resnet/'
model_platform: 'tensorflow'
}
}
执行以下命令来加载fashion
和resnet
两个模型:
tensorflow_model_server --port=9000", "--rest_api_port=8500", "--model_config_file=/etc/config/models.config"
模型存储系统
tensorflow-serving
的另一个特点就是支持从不同类型的存储系统中加载模型。比如本地的文件系统、s3、hdfs等等
从本地文件系统中加载
tensorflow_model_server --port=9000 --rest_api_port=8500 --model_name=resnet --model_base_path=/home/jiang/data/yolov3
从s3加载
从s3(兼容s3的对象存储系统都可以)中加载模型,需要配置一些环境变量
export AWS_ACCESS_KEY_ID=<key id>
export AWS_SECRET_ACCESS_KEY=<key>
export S3_ENDPOINT=minio-service.minio:9000
export S3_USE_HTTPS=0
export S3_VERIFY_SSL=0
export AWS_REGION=us-west-1
export S3_REGION=us-west-1
export AWS_LOG_LEVEL=3
然后通过以下命令启动服务即可
tensorflow_model_server --port=9000 --rest_api_port=8500 --model_name=resnet --model_base_path=s3://models/resnet/
从hdfs中加载
从hdfs中加载需要设置以下的环境变量
JAVA_HOME
: Java 的安装路径-
HADOOP_HDFS_HOME
: HDFS 的安装路径,如果在LD_LIBRARY_PATH中设置了libhdfs.so
的路径,那么这个环境变量可以不要。 -
LD_LIBRARY_PATH
: 引入libjvm.so
的路径。如果你的 HADOOP 发行版在${HADOOP_HDFS_HOME}/lib/native
这个目录下没有包含libhdfs.so
,也需要引入它。
export LD_LIBRARY_PATH={LD_LIBRARY_PATH}:{JAVA_HOME}/jre/lib/amd64/server
CLASSPATH
: 注意仅仅是设置CLASSPATH
环境变量是不行的,需要用以下的方式使用:
CLASSPATH=({HADOOP_HDFS_HOME}/bin/hadoop classpath --glob) tensorflow_model_server --port=9000 --rest_api_port=8500 --model_name=yolov3 --model_base_path=hdfs://worknode2:9000/pipeline/models/yolov3
在k8s中部署
s3
tensorflow-serving 官方提供了docker镜像,因此使用 s3 的方式加载模型部署是很简单的。
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
name: tfserving-deployment
spec:
replicas: 1
template:
metadata:
labels:
app: tfserving
spec:
containers:
- name: serving-container
image: tensorflow/serving:1.14.0
ports:
- containerPort: 8500
- containerPort: 9000
env:
- name: AWS_ACCESS_KEY_ID
value: J5WW5NKKV7AE9S0WZCM1
- name: AWS_SECRET_ACCESS_KEY
value: TbG0Y6nnUV8nQNLL9n4B3u3UPMMCJvqs2COx3and
- name: S3_ENDPOINT
value: minio-service.minio:9000
- name: S3_USE_HTTPS
value: "0"
- name: S3_VERIFY_SSL
value: "0"
- name: AWS_REGION
value: us-west-1
- name: S3_REGION
value: us-west-1
- name: AWS_LOG_LEVEL
value: "3"
command: ["/usr/bin/tensorflow_model_server"]
args: ["--port=9000", "--rest_api_port=8500", "--model_name=resnet", "--model_base_path=s3://models/resnet/"]
---
apiVersion: v1
kind: Service
metadata:
labels:
run: tf-service
name: tf-service
spec:
ports:
- name: rest-api-port
port: 8500
targetPort: 8500
- name: grpc-port
port: 9000
targetPort: 9000
selector:
app: tfserving
type: NodePort
hdfs
在官方提供的 docker 镜像中,并没有打包 hdfs 的环境,因此我们需要自己构建一个镜像:
Dockerfile 所在目录如下:
hdfs_dockerfile
├── Dockerfile
└── hadoop-2.10.0
├── bin
├── etc
├── include
├── lib
├── libexec
├── LICENSE.txt
├── logs
├── NOTICE.txt
├── README.txt
├── sbin
└── share
Dockerfile 如下:
FROM tensorflow/serving:1.14.0
RUN apt update && apt install -y openjdk-8-jre
COPY hadoop-2.10.0 /root/hadoop
ENV JAVA_HOME /usr/lib/jvm/java-8-openjdk-amd64/
ENV HADOOP_HDFS_HOME /root/hadoop
ENV LD_LIBRARY_PATH {LD_LIBRARY_PATH}:{JAVA_HOME}/jre/lib/amd64/server
RUN echo '#!/bin/bash \n\n\
CLASSPATH=({HADOOP_HDFS_HOME}/bin/hadoop classpath --glob) tensorflow_model_server --port=8500 --rest_api_port=9000 \
--model_name={MODEL_NAME} --model_base_path={MODEL_BASE_PATH}/{MODEL_NAME} \
"@"' > /usr/bin/tf_serving_entrypoint.sh \
&& chmod +x /usr/bin/tf_serving_entrypoint.sh
EXPOSE 8500
EXPOSE 9000
ENTRYPOINT ["/usr/bin/tf_serving_entrypoint.sh"]
进行构建:
docker build -t tensorflow_serving:1.14-hadoop-2.10.0 .
运行:
docker run -p 9000:9000 --name tensorflow-serving -e MODEL_NAME=yolov3 -e MODEL_BASE_PATH=hdfs://192.168.50.166:9000/pipeline/models -t tensorflow_serving:1.14-hadoop-2.10.0
这样将上面的部署文件稍微修改一下即可使用。
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
name: tfserving-deployment
spec:
replicas: 1
template:
metadata:
labels:
app: tfserving
spec:
containers:
- name: serving-container
image: joyme/tensorflow_serving:1.14-hadoop-2.10.0
ports:
- containerPort: 8500
- containerPort: 9000
env:
- name: MODEL_NAME
value: yolov3
- name: MODEL_BASE_PATH
value: hdfs://192.168.50.166:9000/pipeline/models
---
apiVersion: v1
kind: Service
metadata:
labels:
run: tf-service
name: tf-service
spec:
ports:
- name: rest-api-port
port: 8500
targetPort: 8500
- name: grpc-port
port: 9000
targetPort: 9000
selector:
app: tfserving
type: NodePort
模型调用
tensorflow-serving 支持两种方式调用模型进行预测: GRPC 和 RESTful api
GRPC的方式如下:
from __future__ import print_function
import grpc
import requests
import tensorflow as tf
from tensorflow_serving.apis import predict_pb2
from tensorflow_serving.apis import prediction_service_pb2_grpc
IMAGE_URL = 'https://tensorflow.org/images/blogs/serving/cat.jpg'
tf.app.flags.DEFINE_string('server', '192.168.50.201:30806', 'PredictionService host:port')
tf.app.flags.DEFINE_string('image', '', 'path to image in jpeg format')
FLAGS = tf.app.flags.FLAGS
def main(_):
if FLAGS.image:
with open(FLAGS.image, 'rb') as f:
data = f.read()
else:
dl_request = requests.get(IMAGE_URL, stream=True)
dl_request.raise_for_status()
data = dl_request.content
channel = grpc.insecure_channel(FLAGS.server)
stub = prediction_service_pb2_grpc.PredictionServiceStub(channel)
# Send request
request = predict_pb2.PredictRequest()
request.model_spec.name = 'resnet'
request.model_spec.signature_name = 'serving_default'
request.inputs['image_bytes'].CopyFrom(
tf.contrib.util.make_tensor_proto(data, shape=[1]))
result = stub.Predict(request, 10.0) # 10 secs timeout
print(result)
if __name__ == '__main__':
tf.app.run()
RESTful API的方式如下
import requests
import json
import base64
with open("cat.jpg", "rb") as image_file:
encoded_string = base64.b64encode(image_file.read())
headers = {"content-type": "application/json"}
body = {
"instances": [
{'b64': encoded_string}
]
}
r = requests.post('http://192.168.50.201:32063/v1/models/resnet:predict', data = json.dumps(body), headers = headers)
print(r.text)
请问像这样model_name=xxx,model_base_path=yyyy之后,在rest请求中是直接/v1/models/xxx:predict这样调用么?
对
为啥照着你的docker打包的镜像,然后运行docker run 还是报could not find base path呀,请问你是怎么操作的呀~
我上面的 model base path 是 S3 或者 HDFS 的路径。你要是从本地加载,就挂载到 Docker 中然后用文件系统的路径。
我这个model_bade_path也是配的hdfs路径,但是就是报错could not find path hdfs://xxxx:xx/user/cess2_test/workspace/cess/tf_model_4 ,这个问题你有碰到过么,hadoop配置那些的都改了的。
注意路径是不是多写了一层。或者 hdfs 的配置。时间太久我也记不清了